CALCUL INTÉGRAL			
Cours	Terminale S		

1. Notion d'intégrale

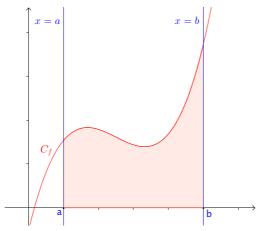
Soit f une fonction **continue et positive** sur un intervalle [a; b].

Soit \mathcal{C}_f sa courbe représentative dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

Définition 1 : On appelle :

- Unité d'aire (u.a.) : l'aire du rectangle bâti à partir des vecteurs \vec{i} et \vec{j} .
- **Domaine sous la courbe** : domaine délimité par la courbe \mathcal{C}_f , l'axe des abscisses, et les droites d'équation x = a et x = b $(a \neq b)$.

Ce domaine est l'ensemble des points M(x; y) tels que $a \le x \le b$ et $0 \le y \le f(x)$.

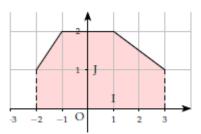


• Intégrale de f sur [a; b]: la mesure de l'aire en u.a. du domaine situé sous la courbe \mathcal{C}_f . On la note : $\int_a^b f(x) dx$, qui se lit « intégrale de a à b de f ». a et b sont appelés les bornes de l'intégrale.

Cette notation est due au mathématicien allemand Gottfried Wilhelm von Leibniz (1646 ; 1716 Le symbole \int est un S stylisé (initiale de somme) afin de rappeler que l'intégrale peut être obtenue comme limite d'une somme d'aires de rectangles. Ce symbole a été introduit par Leibniz au XVIIe siècle, mais la notation \int_a^b a été introduite par le français Joseph Fourier (1768 ; 1830). Plus tard, un second mathématicien allemand, Bernhard Riemann (1826 ; 1866) établit une théorie aboutie du calcul intégral.

Exemple: On donne la représentation ci-contre d'une fonction f sur $\begin{bmatrix} -2 \ ; \ 3 \end{bmatrix}$, ainsi que les mesures: OI = 2 cm et OJ = 3 cm.

Calculer $\int_{-2}^{3} f(x) dx$, puis en déduire l'aire en cm² de la partie grisée.



Une unité d'aire correspond à un rectangle. Or il y en a 7 « entiers », une moitié de rectangle et deux morceaux (à droite) qui forment un rectangle « entier ».

Par conséquent, $\int_{-2}^{3} f(x) dx = 8.5$.

Or 1 u.a. $= 2 \times 3 = 6$ cm² et $8,5 \times 6 = 51$, donc l'aire de la surface grisée est égale à 51 cm².

<u>Remarques</u>: • f(x) dx est l'aire d'un rectangle de dimensions f(x) et dx.

• La variable x est dite muette et peut être remplacée par n'importe quelle lettre :

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du.$$

2. Exemple de calcul d'intégrale

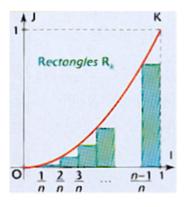
Calculer l'intégrale de la fonction carrée sur [0;1].

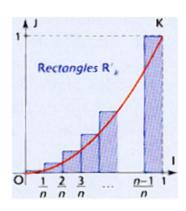
a) Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, \mathscr{C} est la courbe qui représente la fonction f définie sur [0; 1] par $f(x) = x^2$. \mathscr{D} est le domaine situé sous la courbe \mathscr{C} .

On choisit de prendre l'aire du carré OIKJ pour unité d'aire et on se propose de déterminer l'aire $\mathcal A$ de $\mathcal D$. Pour cela :

- on subdivise l'intervalle [0; 1] en n intervalles de longueur $\frac{1}{n}$ avec $n \in \mathbb{N}^*$;
- sur chaque intervalle $\left[\frac{k}{n}; \frac{k+1}{n}\right]$ (avec $0 \le k \le n-1$), on construit le rectangle R_k de

hauteur $\left(\frac{k}{n}\right)^2$ et le rectangle R'_k de hauteur $\left(\frac{k+1}{n}\right)^2$.





a) On note u_n la somme des aires des rectangles R_k et v_n la somme des aires des rectangles R_k^{\prime} .

Donc:
$$u_n = \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \dots + \left(\frac{n-1}{n} \right)^2 \right] = \frac{1}{n^3} \left(1^2 + 2^2 + \dots + \left(n - 1 \right)^2 \right).$$

On peut montrer par récurrence que $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Donc
$$u_n = \frac{(n-1)(2n-1)}{6n^2}$$
.

De même,
$$v_n = \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \dots + \left(\frac{n}{n} \right)^2 \right] = \frac{1}{n^3} \left(1^2 + 2^2 + \dots + n^2 \right).$$

Donc
$$v_n = \frac{(n+1)(2n+1)}{6n^2} = u_n + \frac{1}{n}$$
.

On en déduit que : $u_n \le \mathcal{A} \le v_n$.

b) Calculer à l'aide d'un algorithme les valeurs de u_n et v_n lorsque n prend les valeurs : 5 ; 10 ; 20 ; 100

ou

Entrée

Saisir les réels a et bSaisir l'entier n

Initialisation

Affecter à k la valeur (b-a)/n

Affecter à x la valeur a

Affecter à u la valeur 0

Affecter à v la valeur 0

Traitement des données

Pour i allant de 0 à n-1

Faire

Affecter à u la valeur $u + k \times f(x)$

Affecter à x la valeur x + k

Affecter à v la valeur $v + k \times f(x)$

Fin pour

Sortie

Afficher u et v

Entrée

Lire l'entier n

Initialisation

Affecter à u la valeur 0

Traitement des données

Pour i allant de 1 à n-1

Faire

Affecter à u la valeur $u + \frac{k^2}{n^3}$

Fin pour

Affecter à v la valeur $u + \frac{1}{n}$

Sortie

Afficher u et v

On obtient les résultats suivants :

n	и	v
5	0,240	0,440
10	0,285	0,385
20	0,308	0,359
100	0,328	0,339

Il semble que les suites (u_n) et (v_n) convergent vers 0,333.

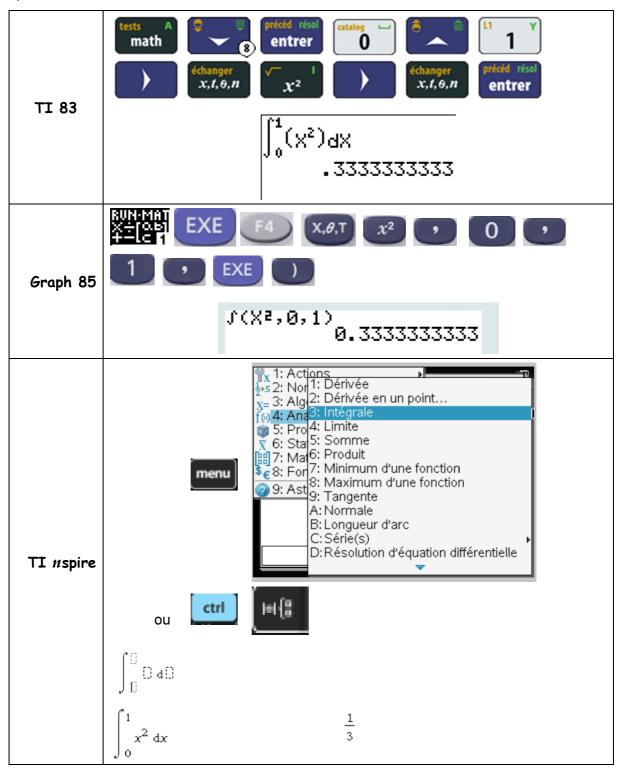
c) Montrer que ces suites convergent.

$$u_n = \frac{(n-1)(2n-1)}{6n^2} = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2}$$
 et $v_n = u_n + \frac{1}{n} = \frac{1}{3} - \frac{1}{n} + \frac{1}{6n^2}$.

Or $\lim_{n\to +\infty}\frac{1}{n}=0$ et $\lim_{n\to +\infty}\frac{1}{n^2}=0$, alors $\lim_{n\to +\infty}u_n=\frac{1}{3}$ et $\lim_{n\to +\infty}v_n=\frac{1}{3}$ (par produit et somme de limites).

Comme $u_n \le \mathcal{A} \le v_n$, d'après le théorème des gendarmes, on en déduit que $\mathcal{A} = \frac{1}{3}$, et par suite, $\int_0^1 x^2 dx = \frac{1}{3}$.

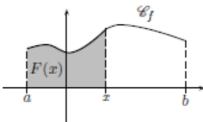
e) Utilisation de la calculatrice



3. Fonction définie par une intégrale

Théorème 1: Soit f une fonction continue et positive sur un intervalle [a;b].

La fonction F définie sur [a;b] par $F(x) = \int_a^x f(t) dt$ est dérivable sur [a;b] et sa dérivée



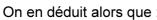
<u>Démonstration dans le cas où f est positive et croissante</u> : Soit $x_0 \in [a; b]$ et h un réel non nul tel que $(x_0 + h) \in [a; b]$.

• Si h > 0: Par définition, $F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt$.

Par suite, $F(x_0 + h) - F(x_0)$ est l'aire de la partie grisée ci-contre.

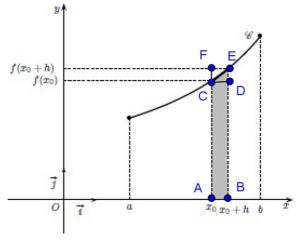
Comme *f* est croissante, cette aire est comprise entre les aires des rectangles ABFE et ABCD.

Or l'aire du rectangle ABCD est égale à $h \times f(x_0)$, et celle du rectangle ABCD est égale à $h \times f(x_0 + h)$.



On en déduit alors que :

$$h \times f(x_0) \le F(x_0 + h) - F(x_0) \le h \times f(x_0 + h)$$



Comme
$$h > 0$$
, on obtient : $f(x_0) \le \frac{F(x_0 + h) - F(x_0)}{h} \le f(x_0 + h)$.

Or f est continue sur [a; b], donc en x_0 , alors $\lim_{h\to 0} f(x_0+h) = f(x_0)$.

Donc, d'après le théorème des gendarmes, on en déduit que $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{t} = f(x_0)$

• Si h < 0: par un raisonnement analogue, on obtient:

$$-h \times f(x_0 + h) \le F(x_0) - F(x_0 + h) \le -h \times f(x_0)$$

Comme -h > 0, alors $f(x_0 + h) \le \frac{F(x_0) - F(x_0 + h)}{h} \le f(x_0)$, ou encore

$$f\left(x_{0}+h\right) \leq \frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h} \leq f\left(x_{0}\right). \text{ Par conséquent, } \lim_{h\to 0} \frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h} = f\left(x_{0}\right).$$

• Finalement, f est dérivable pour tout x_0 de [a;b], et $F'(x_0) = f(x_0)$.

4. Primitives d'une fonction continue

1) Définition et propriétés

Soit les fonctions f et g définies respectivement par f(x) = 2x + 1 et $g(x) = x^2 + x + 5$.

On remarque que, pour tout réel x, g'(x) = f(x).

On dit que g est une primitive de f sur \mathbf{R} .

<u>Définition 2</u>: Soit f une fonction définie sur un intervalle I. On appelle primitive de f sur I, toute fonction F dérivable sur I dont la dérivée F est égale à f.

<u>Remarque</u>: Dans l'exemple précédent, la fonction h définie sur \mathbf{R} par $h(x) = x^2 + x$ est également une primitive de f sur \mathbf{R} . Plus généralement, si C est une constante réelle, la fonction h définie sur \mathbf{R} par $h(x) = x^2 + x + C$ est une primitive de f sur \mathbf{R} . Une fonction n'a pas une seule primitive.

Propriété 1: Si F est une primitive de f sur un intervalle \mathbf{I} , alors toute primitive de f sur \mathbf{I} est de la forme F + C où C est une fonction constante sur \mathbf{I} .

Démonstration:

• Si F est une primitive de f sur \mathbf{I} , alors la fonction G définie par G(x) = F(x) + C où C est une fonction constante sur \mathbf{I} , vérifie : G'(x) = F'(x) + 0 = f(x).

Donc G est une primitive de f sur I.

• Réciproquement, si F et G sont deux primitives de f sur \mathbf{I} , considérons la fonction G-F dérivable sur \mathbf{I} .

Elle vérifie, pour tout élément x de I :

$$(G-F)'(x) = (G'-F')(x) = G'(x)-F'(x) = f(x)-f(x) = 0.$$

Donc G - F = C sur I, où C est une fonction constante, c'est-à-dire pour tout élément x de I, G(x) = F(x) + C.

<u>Exemple</u>: La fonction sinus est une primitive sur **R** de la fonction cosinus, alors toute primitive G de la fonction cosinus sur **R** vérifie : $G(x) = \sin x + C$, où C est un nombre réel.

Remarque : L'hypothèse *I est un intervalle* est fondamentale.

En effet, soit les fonctions F et G définies sur \mathbf{R}^* par :

$$F(x) = \frac{1}{x} \text{ et } \begin{cases} G(x) = \frac{1}{x} + 1 \text{ si } x > 0 \\ G(x) = \frac{1}{x} - 1 \text{ si } x < 0 \end{cases}.$$

Sur chacun des intervalles $]-\infty$; 0[et]0; + ∞ [, F et G ont même fonction dérivée f:

 $x \mapsto -\frac{1}{x^2}$, mais il n'existe pas de fonction constante C telle que, pour tout x de \mathbf{R}^* , G(x) = F(x) + C.

Propriété 2: Soit f une fonction dérivable sur un intervalle I, x_0 un nombre réel de I et y_0 un nombre réel. Il existe une et une seule primitive de F de f vérifiant $F(x_0) = y_0$.

 $\underline{\textit{D\'{e}monstration}}$: • Unicité : soit G une primitive de f sur I.

Les primitives de f sont de la forme F(x) = G(x) + C, C étant un nombre réel.

$$F(x_0) = y_0$$
, donc $C = y_0 - G(x_0)$ et F est déterminée de manière unique par : $F(x) = G(x) + y_0 - G(x_0)$.

ullet Existence: soit G une primitive de f sur ${\bf I}$.

La fonction F définie par $F(x) = G(x) + y_0 - G(x_0)$ convient car F'(x) = G'(x) = f(x) et $F(x_0) = G(x_0) + y_0 - G(x_0) = y_0$.

<u>Exemple</u>: Déterminons la primitive de $f: x \mapsto \cos x$ prenant la valeur 2 en $-\frac{\pi}{2}$. Nous savons que les primitives sur \mathbf{R} de f sont de la forme $F: x \mapsto \sin x + C$. Comme $F\left(-\frac{\pi}{2}\right) = 2$, $\sin\left(-\frac{\pi}{2}\right) + C = 2$. D'où, C = 3 et $F(x) = \sin x + 3$.

<u>Théorème 2</u>: Toute fonction continue sur un intervalle admet des primitives sur cet intervalle.

Démonstration dans le cas où f est définie sur [a;b] et f admet un minimum m sur [a;b]. : La fonction $g: x \mapsto f(x) - m$ est continue et positive sur I. D'après le théorème 1, elle admet une primitive G sur [a;b], telle que G'(x) = g(x) = f(x) - m. Posons F(x) = G(x) + mx; et F est dérivable sur [a;b], de plus F'(x) = G'(x) + m = f(x). C'est donc une primitive de f sur [a;b].

<u>Remarque</u>: La forme explicite d'une primitive n'est pas toujours connue malgré le fait que son existence soit assurée par le théorème précédent. Par exemple, la fonction $x \mapsto e^{-x^2}$ ne possède pas de primitive sous une forme explicite.

2) Tableaux des primitives

Les résultats du tableau suivant sont obtenus à partir des dérivées connues. C désigne une constante quelconque.

Fonction	Primitives	Intervalle I
f(x) = k (k constante réelle)	F(x) = kx + C	R
$f(x) = x^n n \in \mathbf{Z}^* - \{-1\}$	$F\left(x\right) = \frac{1}{n+1}x^{n+1} + C$	R*
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + C$]0 ;+∞[
$f\left(x\right) = \frac{1}{x}$	$F(x) = \ln x + C$]0 ;+∞[
$f(x) = e^x$	$F(x) = e^x + C$	R
$f(x) = \sin x$	$F(x) = -\cos x + C$	R
$f(x) = \sin(ax + b) \ (a \neq 0)$	$F(x) = -\frac{1}{a}\cos(ax + b) + C$	R
$f(x) = \cos x$	$F(x) = \sin x + C$	R
$f(x) = \cos(ax + b) \ (a \neq 0)$	$F(x) = \frac{1}{a}\sin(ax+b) + C$	R
$f(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$	$F(x) = \tan x + C$	$\mathbf{R} - \left\{ k \frac{\pi}{2} ; k \in \mathbf{Z} \right\}$

Application : f est une fonction définie sur R. Trouver dans chacun des cas suivants les primitives de f: f(x) = 2; f(x) = x; $f(x) = \cos(2x - \frac{\pi}{4})$.

- Si f(x) = 2, alors les primitives F de f sur **R** sont définies par F(x) = 2x + C, où C est une constante réelle.
- Si f(x) = x, alors les primitives F de f sur \mathbb{R} sont définies par $F(x) = \frac{1}{2}x^2 + C$, où C est une constante réelle.
- Si $f(x) = \cos\left(2x \frac{\pi}{4}\right)$, alors les primitives $F \det f \sec \mathbf{R}$ sont définies par $F(x) = \frac{1}{2}\sin(2x - \frac{\pi}{4}) + C$, où C est une constante réelle.

3) Linéarité des primitives

Propriétés 3 : Si F et G sont des primitives respectives des fonctions f et g sur un intervalle

- F + G est une primitive de la fonction f + g sur \mathbf{I} ; pour tout réel k, kF est une primitive de kf sur \mathbf{I} .

Démonstration : Soit x un élément de I. Soit k un réel.

- (F+G)'(x)=F'(x)+G'(x)=f(x)+g(x)=(f+g)(x); d'où F+G est une primitive de la fonction f + g sur I.
- (kG)'(x) = kF'(x) = kf(x) = (kf)(x); d'où kF est une primitive de kf sur I.

* Attention!: Une primitive d'un produit ne sera pas obtenue en prenant le produit des primitives, puisque la dérivée d'un produit n'est pas le produit des dérivées.

Application : Pour chacune des fonctions f ci-dessous, donner un intervalle I sur lequel f a des primitives et donner toutes les primitives de f sur I :

a)
$$f(x)=3x^2-5x+\frac{2}{x}$$
, $I=R^+$; b) $f(x)=3\sin x+2\cos x$, $I=R$; c) $f(x)=\frac{e^x+4}{3}$, $I=R$

a)
$$F(x) = 3 \times \frac{1}{3}x^3 - 5 \times \frac{1}{2}x^2 + 2\ln x + C = x^3 - \frac{5}{2}x^2 + 2\ln x + C$$
;

b)
$$F(x) = 3 \times (-\cos x) + 2 \times (\sin x) + C = -3\cos x + 2\sin x + C$$
;

c)
$$f(x) = \frac{1}{3}e^x + \frac{4}{3}$$
; donc $F(x) = \frac{1}{3}e^x + \frac{4}{3}x + C$.

4) Primitives et fonctions composées

C est une constante réelle, I un intervalle de **R** et u une fonction définie et dérivable sur I.

Fonction f	Primitives $F \deg f$ sur ${ t I}$	Conditions
$u'u^n \ n \in \mathbf{Z}^* - \{-1\}$	$\frac{1}{n+1}u^{n+1}+C$	Si $n < 0$, $u(x)$ doit être différent de 0, pour tout x de I
$\frac{u'}{2\sqrt{u}}$	$\sqrt{u} + C$	u(x) > 0 pour tout x de I
$\frac{u'}{u}$	In <i>u</i> + <i>C</i>	u(x) > 0 pour tout x de I
$u'e^u$	$e^u + C$	
$u'\cos u$	$\sin u + C$	
$u'\sin u$	$-\cos u + C$	

<u>Applications</u>: Pour chacune des fonctions f suivantes, reconnaître une règle de dérivation permettant de déterminer ses primitives et en déduire une primitive sur l'intervalle I:

a)
$$f(x) = x^2(x^3 - 1)^5$$
; $I = R$.

b)
$$f(x) = \frac{3x}{\sqrt{x^2 - 1}}$$
; $I = J1$; $+ \infty [$.

c)
$$f(x) = \frac{x}{x^2 - 4}$$
; $I = \frac{12}{5} + \infty$ [.

d)
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$
; $I = [0] + \infty[$.

e)
$$f(x) = \frac{\ln x}{x}$$
; I = $\int_{0}^{\infty} f(x) + \infty [$.

$$f) f(x) = e^{3x} ; I = R.$$

a)
$$f(x) = x^2 (x^3 - 1)^5$$
. Posons $u(x) = x^3 - 1$, alors $u'(x) = 3x^2$. Ainsi $x^2 = \frac{1}{3}u'(x)$, et, par suite, $f(x) = \frac{1}{3}u'(x)u^5(x)$. Par conséquent, $F(x) = \frac{1}{3} \times \frac{1}{6}u^6(x) = \frac{1}{18}(x^3 - 1)^6$.

b)
$$f(x) = \frac{3x}{\sqrt{x^2 - 1}}$$
. Posons $u(x) = x^2 - 1$, alors $u'(x) = 2x$. Ainsi $x = \frac{1}{2}u'(x)$, et, par suite,

$$f(x) = \frac{3 \times \frac{1}{2} u'(x)}{\sqrt{u(x)}} = 3 \times \frac{u'(x)}{2\sqrt{u(x)}}$$
. Par conséquent, $F(x) = 3\sqrt{x^2 - 1}$.

c)
$$f(x) = \frac{x}{x^2 - 4}$$
. Posons $u(x) = x^2 - 4$, alors $u'(x) = 2x$. Ainsi $x = \frac{1}{2}u'(x)$, et, par suite,

$$f(x) = \frac{\frac{1}{2}u'(x)}{u(x)} = \frac{1}{2} \times \frac{u'(x)}{u(x)}$$
. Par conséquent, $F(x) = \frac{1}{2} \times \ln(u(x)) = \frac{1}{2}\ln(x^2 - 4)$.

d)
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$
. Posons $u(x) = \frac{1}{x}$, alors $u'(x) = -\frac{1}{x^2}$. Par suite, $f(x) = u'(x)e^{u(x)}$.

Par conséquent, $F(x) = e^{u(x)} = e^{\frac{1}{x}}$.

e)
$$f(x) = \frac{\ln x}{x}$$
. Posons $u(x) = \ln x$, alors $u'(x) = \frac{1}{x}$. Par suite, $f(x) = u'(x)u(x)$.

Par conséquent, $F(x) = \frac{1}{2} \times u^2(x) = \frac{1}{2} (\ln x)^2$.

f) $f(x) = e^{3x}$. Posons u(x) = 3x, alors u'(x) = 3. Par suite, $f(x) = \frac{1}{3} \times u'(x) e^{u(x)}$.

Par conséquent, $F(x) = \frac{1}{2}e^{u(x)} = \frac{1}{2}e^{3x}$.

5. Calculs d'intégrales

1) Définition

Propriétés 4 : Soit f une fonction continue sur un intervalle I, a et b deux réels de I. Si F est une primitive quelconque de f sur I, $\int_{a}^{b} f(x) dx = F(b) - F(a)$

<u>Démonstration</u>: La dérivée de la fonction G définie sur [a;b] par $G(x) = \int_a^x f(t) dt$ est la fonction f. Donc G est une primitive de f sur $\lceil a ; b \rceil$.

Si F est une primitive de f alors pour tout x de $\lceil a \mid b \rceil$, on a G(x) = F(x) + C, où C est une constante réelle.

De plus, $G(a) = \int_a^a f(t) dt = 0$ et G(a) = F(a) + C, donc F(a) = -C et par suite, C = -F(a).

On en déduit que $G(b) = \int_a^b f(t) dt = F(b) + C = F(b) - F(a)$.

<u>Définition 3</u>: Soit f une fonction continue sur un intervalle [a;b]. On appelle intégrale de fsur [a;b] le nombre F(b)-F(a) où F est une primitive quelconque de f sur [a;b]. On écrit également : $\int_a^b f(x) dx = [F(x)]_a^b = F(b)-F(a)$.

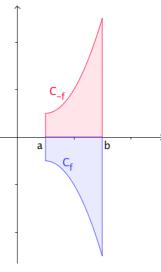
Remarque : La définition est étendue à des fonctions de signe quelconque.

Ainsi pour une fonction f négative sur $\lceil a ; b \rceil$, on peut écrire :

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = -G(b) + G(a)$$
$$= -(G(b) - G(a))$$
$$= -\int_{a}^{b} (-f)(t) dt$$

où G est une primitive de la fonction - f.

Dans ce cas, l'intégrale de la fonction f sur |a|; b | est égale à l'opposé de l'aire comprise entre l'axe des abscisse et la courbe représentative de f sur |a;b|.



Applications : Calculer, à l'aide des primitives, les intégrales suivantes :

$$\bullet \int_{1}^{e} \frac{\ln x}{x} dx$$

$$\bullet \int_{e}^{e^3} \frac{1}{x \ln x} dx$$

•
$$\int_1^e \frac{\ln x}{x} dx = \left[\frac{1}{2}(\ln x)^2\right]_1^e = \frac{1}{2}(\ln e)^2 - \frac{1}{2}(\ln 1)^2 = \frac{1}{2} - 0 = \frac{1}{2}.$$

Voir la recherche d'une primitive dans la partie 4, 4) e), page 9.

•
$$\int_{e}^{e^3} \frac{1}{x \ln x} dx = \left[\ln(\ln x) \right]_{e}^{e^3} = \ln\left(\ln(e^3) \right) - \ln\left(\ln(e) \right) = \ln(3\ln(e)) - \ln 1 = \ln 3 - \ln 1 = \ln 3$$
.

En effet, si on note f la fonction définie sur $\left[e; e^3\right]$ par $f(x) = \frac{1}{x \ln x}$, alors $f(x) = \frac{u'(x)}{u(x)}$

avec $u(x) = \ln x$. La fonction F définie sur \mathbb{I} par $F(x) = \ln(u(x)) = \ln(\ln x)$ est une primitive de f sur I.

2) Propriétés de l'intégrale

Propriété 5 : Soit f une fonction continue sur \mathbf{I} , et a et b deux réels de \mathbf{I} .

Alors:
$$\int_{a}^{a} f(x) dx = 0 \text{ et } \int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

 $\underline{\textit{Démonstrations}}$: Soit F une primitive de f sur I.

$$\int_{a}^{a} f(x) dx = F(a) - F(a) = 0$$

$$\int_{b}^{a} f(x) dx = F(a) - F(b) = -(F(b) - F(a)) = -\int_{a}^{b} f(x) dx$$

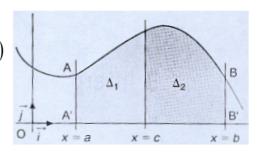
Propriété 6 (relation de Chasles) : Soit f une fonction continue sur \mathbf{I} , et, a, b et c trois réels de \mathbf{I} . Alors : $\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$.

Démonstrations : Soit F une primitive de f sur I.

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = (F(c) - F(a)) + (F(b) - F(c))$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} f(x) dx$$



Propriétés 7: Soit f et g deux fonctions continues sur un intervalle I; a et b deux réels de I.

Pour tout réel k, $\int_a^b kf(x) dx = k \int_a^b f(x) dx$

Pour tout réel
$$k$$
, $\int_a^b k f(x) dx = k \int_a^b f(x) dx$

$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

 $\underline{\textit{Démonstrations}}$: Soit F une primitive de f sur I. Soit G une primitive de g sur I. Soit k un

$$\int_{a}^{b} k f(x) dx = (kF)(b) - (kF)(a) = k(F(b) - F(a)) = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f+g)(x) dx = (F+G)(b) - (F+G)(a) = F(b) + G(b) - F(a) - G(a) = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Propriété 8: Soit f et g deux fonctions dérivables sur un intervalle \mathbf{I} , et a et b deux réels de \mathbf{I} , avec $a \le b$. Si f est positive sur $\begin{bmatrix} a \ ; b \end{bmatrix}$, alors $\int_a^b f(x) \mathrm{d}x \ge 0$ Si $f \le g$ sur \mathbf{I} , alors $\int_a^b f(x) \mathrm{d}x \le \int_a^b g(x) \mathrm{d}x$.

Si
$$f$$
 est positive sur $[a; b]$, alors $[f]^b f(x) dx \ge 0$

Si
$$f \le g$$
 sur I, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$

<u>Démonstrations</u>: • Par définition, lorsque f est positive, l'intégrale de f est une aire donc est positive. Par suite, $\int_a^b f(x) dx \ge 0$.

• Si $f(x) \le g(x)$ alors $g(x) - f(x) \ge 0$.

Donc en appliquant a), on a : $\int_{a}^{b} (g(x) - f(x)) dx \ge 0$.

D'après les propriétés 6 et 7, on obtient $\int_a^b g(x) dx - \int_a^b f(x) dx \ge 0$.

Par conséquent, $\int_{a}^{b} g(x) dx \ge \int_{a}^{b} f(x) dx$.

3) Application : encadrement d'une intégrale

- a) Démontrer que pour tout x de [0 ; 1], on a
- b) En déduire que
- a) Comme $x \in [0; 1]$, alors $x^2 \le x$.

De plus, la fonction exponentielle est strictement croissante et positive sur \mathbf{R} , alors $0 \le e^{x^2} \le e^x$.

b) D'après le a), on en déduit que $\int_0^1 0 dx \le \int_0^1 e^{x^2} dx \le \int_0^1 e^x dx$.

Or
$$\int_0^1 0 dx = [C]_0^1 = 0$$
 et $\int_0^1 e^x dx = [e^x]_0^1 = e^1 - e^0 = e - 1$.

Par conséquent, $0 \le \int_0^1 e^{x^2} dx \le e - 1$.

6. Valeur moyenne d'une fonction

1) Définition

<u>Définition 4</u>: Soit f une fonction continue sur [a; b].

La valeur moyenne de f sur [a; b] est le nombre réel : $\mu = \frac{1}{b-a} \int_a^b f(x) dx$.

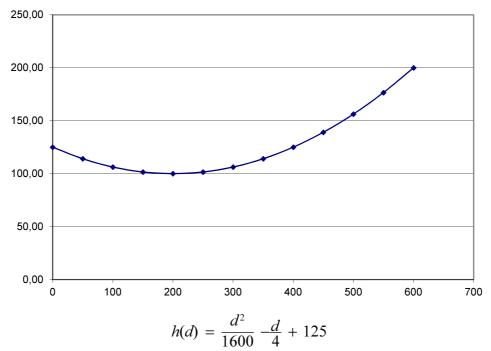
Si f(x) > 0, on s'intéresse au rectangle de largeur b-a dont l'aire est égale à l'aire de la surface hachurée : c'est la longueur m de ce rectangle que l'on appelle « valeur moyenne de f » sur $\lceil a ; b \rceil$.

Si f est une fonction constante sur [a; b], sa valeur moyenne sur [a; b] est égale à cette constante.

En fin de compte, la technique est de remplacer f par une fonction constante de même intégrale sur le même intervalle.

2) Exemples

Exemple 1 : On voudrait niveler le terrain décrit ci-dessous. A quelle hauteur faut-il situer le terrain nivelé pour que les remblais équilibrent les déblais ?



Déterminer une primitive de la fonction h. Puis calculer la valeur moyenne μ de h sur l'intervalle[0;600]. Démontrer ainsi le résultat conjecturé lors de la première partie de ce problème.

Soit H une primitive de h sur [0; 600].

$$H(d) = \frac{1}{1600} \times \frac{1}{3} d^3 - \frac{1}{4} \times \frac{1}{2} d^2 + 125 d = \frac{1}{4800} d^3 - \frac{1}{8} d^2 + 125 d.$$

$$D'où \mu = \frac{1}{600 - 0} \int_0^{600} h(t) dt = \left[H(t) \right]_0^{600} = H(600) - H(0).$$

Or
$$H(0) = 0$$
 et $H(600) = \frac{216\ 000\ 000}{4\ 800} - \frac{360\ 000}{8} + 75\ 000 = 75\ 000$.

Par conséquent, la valeur moyenne de h sur [0; 600] est égale à 125.

Donc il faut situer le terrain nivelé à 125 mètres de hauteur pour que les remblais équilibrent les déblais.

Exemple 2: On modélise à l'aide d'une fonction le nombre de malades lors d'une épidémie. Au $10^{i m}$ jour après le signalement des premiers cas, le nombre de malades est égale à .

Déterminer le nombre moyen de malades chaque jour sur une période de 16 jours.

$$\mu = \frac{1}{16 - 0} \int_0^{16} f(x) dx = \frac{1}{16} \int_0^{16} \left(16x^2 - x^3 \right) dx = \frac{1}{16} \left[\frac{16}{3} x^3 - \frac{1}{4} x^4 \right]_0^{16} = \frac{1}{16} \left(\frac{16}{3} \times 16^3 - \frac{1}{4} \times 16^4 \right)$$

$$\mu = \frac{16^3}{3} - \frac{16^3}{4} = \frac{16^3}{12} = \frac{1024}{3} \approx 341$$

Le nombre moyen de malades chaque jour est environ égal à 341.