DEVOIR MAISON N° 1			
Suites	Pour le lundi 16 octobre 2006		

Établir une fiche synthèse sur les suites arithmétiques et les suites géométriques (définition, propriété fondamentale, sens de variation, limite, calculatrice, somme des termes consécutifs...)

Application

On se propose de choisir entre les deux contrats d'embauche suivants commençant le 1^{er} janvier 2002.

<u>Contrat n^a:</u> le salaire annuel est 14000 € pour la 1^{ère} année et il augmente de 640 € chaque année.

<u>Contrat n²</u>: le salaire annuel est 13000 € pour la 1^{ère} année et il augmente de 5% chaque année.

On note pour tout entier $n \ge 1$:

- U_n le salaire annuel en euros de la *n*-ième année d'embauche pour le contrat 1 ;
- \bullet V_n le salaire annuel en euros de la n-ième année d'embauche pour le contrat 2.
- 1. Calculer U_2 , V_2 , U_3 , V_3 .
- 2. a) Démontrer que la suite *U* est arithmétique et que la suite *V* est géométrique.
 - b) Exprimer U_n et V_n en fonction de n.
- 3. On pose pour tout entier $n \ge 1$, $W_n = V_n U_n$.
 - a) Démontrer que $W_{n+1} W_n = 650 \times (1,05)^{n-1} 640$.
 - b) Démontrer que la suite W est croissante.
 - c) Calculer W₈ et W₉ en arrondissant à l'euro.
- 4. Déduire des résultats de la question 3. l'année à partir de laquelle le salaire annuel du contrat 2 est supérieur à celui du contrat 1.
- 5. Calculer le cumul des salaires perçus à l'issue de 10 années dans chacun des contrats, comparer les résultats.

CORRECTION DU DEVOIR MAISON N° 1

Suites

Pour le lundi 16 octobre 2006

1) Le salaire annuel est de 14 000 € la première année pour le contrat 1.

Puisqu'il subit une augmentation annuelle de 640 €, le loyer annuel u_2 payé lors de la 2^{ième} année sera : u_2 = 14 000 + 640 = **14 640**.

De même, $u_3 = 14640 + 640 = 15280$.

Le salaire annuel est de 13 000 € la première année pour le contrat 2.

Puisqu'il subit une augmentation annuelle de 5 %, le loyer annuel v_2 payé lors de la 2 ième

année sera :
$$\mathbf{v_2} = 13\,000 + 13\,000 \times \frac{5}{100} = 13\,000 \left(1 + \frac{5}{100}\right) = 13\,000 \times 1,05 = \mathbf{13}\,\mathbf{650}.$$

De même, $v_3 = 13650 \times 1,05 = 14332,50$.

2) a) Chaque année le salaire annuel du contrat 2 subit une augmentation de 5 %, c'est-à-dire qu'il est multiplié par 1,05.

On a donc pour tout $n \ge 1$: $v_{n+1} = 1,05 \times v_n$.

La suite V est donc une suite géométrique de raison 1,05 et de premier terme $v_1 = 13000$.

Chaque année le salaire annuel du contrat 1 subit une augmentation de 640 €, c'est-à-dire qu'on lui ajoute 640.

On a donc pour tout $n \ge 1$: $u_{n+1} = u_n + 640$.

La suite U est donc une suite arithmétique de raison 640 et de premier terme $u_1 = 14000$.

b) D'après la question précédente : pour tout $n \ge 1$:

$$u_n = u_1 + (n-1) \times r = 14000 + 640 \times (n-1) = 13360 - 640n$$
.
 $v_n = v_1 \times q^{n-1} = 13000 \times ($

3) a)
$$w_{n+1} - w_n = (v_{n+1} - u_{n+1}) - (v_n - u_n) = (v_{n+1} - v_n) - (u_{n+1} - u_n) = 1,05v_n - v_n - 640$$
.

D'où,
$$\mathbf{w}_{n+1} - \mathbf{w}_n = 0.05 \mathbf{v}_n - 640 = 0.05 \times 13000 \times (1.05)^{n-1} - 640 = \mathbf{650} \times (\mathbf{1.05})^{n-1} - \mathbf{640}$$
.

b) Pour tout entier $n \ge 1$, $(1,05)^{n-1} \ge 1$ car $1,05 \ge 1$.

Alors $650 \times (1,05)^{n-1} \ge 650$, et, par suite, $650 \times (1,05)^{n-1} - 640 \ge 10$.

Par conséquent, $w_{n+1} - w_n > 0$ pour tout entier $n \ge 1$.

Donc, la suite W est strictement croissante.

c)
$$\mathbf{w_8} = 650 \times (1,05)^7 - 640 \approx -188 \text{ euros}$$
.

$$w_9 = 650 \times (1,05)^8 - 640 \approx 87 \text{ euros}$$

4) Le salaire annuel du contrat 2 est supérieur à celui du contrat 1 lorsque w_n est positif. Comme la suite W est strictement croissante, que $w_8 < 0$ et que $w_9 > 0$, alors le salaire annuel du contrat 2 est supérieur à celui du contrat 1 à partir de la $9^{\text{ème}}$ année.

n	U	V	W
1	14000	13000	-1000
2	14640	13650	-990
3	15280	14 332,50	-948
4	15920	15 049,13	-871
5	16560	15 801,58	-758
6	17200	16 591,66	-608
7	17840	17 421,24	-419
8	18480	18 292,31	-188
9	19120	19 206,92	87
10	19760	20 167,27	407
11	20400	21 175,63	776
12	21040	22 234,41	1 194
13	21680	23 346,13	1 666
14	22320	24 513,44	2 193
15	22960	25 739,11	2 779
16	23600	27 026,07	3 426
17	24240	28 377,37	4 137
18	24880	29 796,24	4 916
19	25520	31 286,05	5 766
20	26160	32 850,35	6 690
21	26800	34 492,87	7 693

5) Le cumul des salaires perçus à l'issue de 10 années pour le contrat 1 est égal à $u_1 + u_2 + ... + u_{10}$.

La suite *U* étant arithmétique,

$$u_1 + u_2 + ... + u_{10} = \frac{10 \times (u_1 + u_{10})}{2} = 5 \times (14000 + 19120) = 168800$$
.

Par conséquent, le cumul des salaires perçus à l'issue de 10 années pour le contrat 1 est de 168 800 euros.

Le cumul des salaires perçus à l'issue de 10 années pour le contrat 2 est égal à $v_1 + v_2 + ... + v_{10}$.

La suite *V* étant géométrique,
$$v_1 + v_2 + ... + v_{10} = v_1 \times \frac{1 - (1,05)^{10}}{1 - 1,05} \approx 163513$$
.

Par conséquent, le cumul des salaires perçus à l'issue de 10 années pour le contrat 2 est de 163 513 euros.

On remarque que, sur les 10 premières années, il vaut mieux signer le contrat 1.