DEVOIR MAISON N° 10

Tangentes communes à deux courbes

Pour le 7 janvier 2008

 \mathscr{C}_1 et \mathscr{C}_2 sont les courbes représentatives des fonctions exp et ln dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

L'objectif du problème est de trouver, si elles existent, les tangentes communes à ces deux courbes.

1) a) Afin de pouvoir conjecturer la solution, réaliser une figure à l'aide du logiciel GeoGebra. Voici le protocole de construction

Étapes	
\succ Construire ces courbes \mathcal{C}_1 et \mathcal{C}_2	Dans le champ Saisie: , entrer les expressions des deux fonctions (écrire f(x) pour la fonction exp et g(x) pour la fonction ln).
Construire deux curseurs, que vous nommerez a et b	Utiliser l'icône :
> Construire la tangente (T_1) à \mathcal{C}_1 au point d'abscisse a .	Dans le champ Saisie: , écrire T_1=tangente[a,f] 1
> Construire la tangente (T_2) à \mathcal{C}_2 au point d'abscisse b .	Adapter la procédure précédente

- b) Émettre la conjecture.
- 2) Justification mathématique de la conjecture.
 - a) Écrire une équation de (T_1) et une équation de (T_2) sous la forme ux + vy + w = 0 où u, v et w sont des réels.
 - b) Montrer alors que (T_1) et (T_2) sont confondues si, et seulement si, $b = e^{-a}$ et $e^{-a} = \frac{a-1}{a+1}$.
 - c) Soit h la fonction définie sur $\mathbf{R} \{-1\}$ par $h(x) = e^{-x} \frac{x-1}{x+1}$.

Étudier les variations de h.

- d) En déduire que l'équation f(x) = 0 admet deux solutions a_1 et a_2 .
- e) Déterminer un encadrement d'amplitude 10^{-1} de a_1 et a_2 , puis des valeurs correspondantes b_1 et b_2 .
- f) Répondre au problème posé.

-

¹ En fait, il faut faire attention à la notation que donne le logiciel à votre courbe