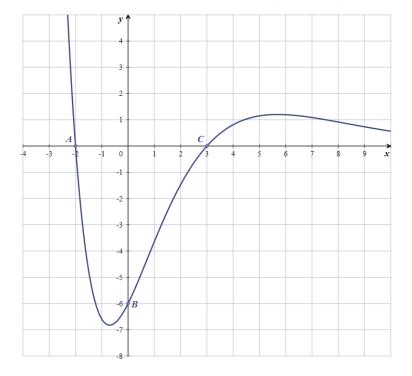
# **DEVOIR SURVEILLÉ N° 3**

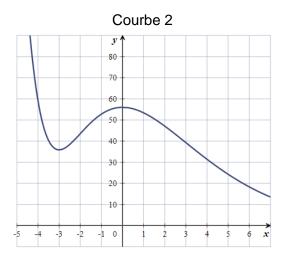
Dérivation, variations de fonction, théorème des valeurs intermédiaires, convexité, point d'inflexion


Le 4 février 2021

Le plus grand soin doit être apporté aux calculs et à la rédaction. Soulignez ou encadrez vos résultats.

# Exercice 1 (4 points)

On considère une fonction f définie sur  $\mathbb R$  et deux fois dérivable. On donne ci-dessous la courbe représentative de la fonction f", dérivée seconde de la fonction f, dans un repère orthonormé.


Les points suivants appartiennent à la courbe : A(-2;0); B(0;6) et C(3;0).



- 1) La courbe représentative de f admet-elle des points d'inflexion ?
- 2) Sur [-2; 3], la fonction est-elle convexe? Est-elle concave?
- 3) Parmi les deux courbes données ci-dessous, une seule est la représentation graphique de la fonction f: laquelle ? Justifier la réponse.

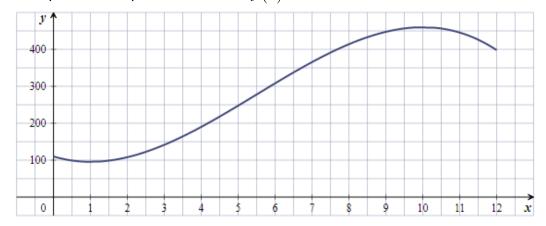
Courbe 1

y
80
70
60
40
30
20
10
12
3 4 5 6 x



## Exercice 2 (7 points)

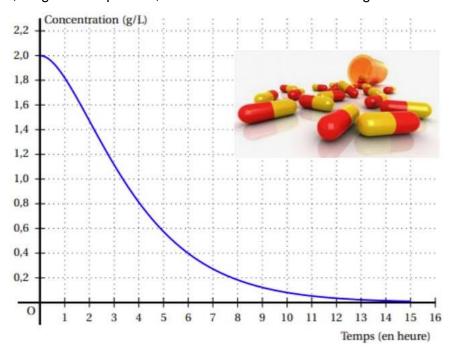
#### Partie A


On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = -x^3 + 16,5x^2 - 30x + 110$ . On note f' la dérivée de la fonction f et f'' sa dérivée seconde.

- 1) a) Déterminer f'(x) pour tout réel x.
  - b) Étudier les variations de la fonction f sur  $\mathbb{R}$ .
- 2) a) Déterminer f''(x) pour tout réel x.
  - b) Étudier la convexité de la fonction f sur  $\mathbb{R}$ .

#### Partie B

La fonction f, définie dans la partie A, modélise sur l'intervalle [0; 12], le cours d'une action sur une année.


x est le temps écoulé exprimé en mois et f(x) est le cours de l'action en euros.



- 1) Sur un an, quel a été le cours le plus bas de cette action ? le cours le plus haut ?
- 2) À quel moment la croissance du cours de cette action s'est-elle ralentie ?

# Exercice 3 (10 points)

On injecte à un patient un médicament et on mesure régulièrement, pendant 15 heures, la concentration, en grammes par litre, de ce médicament dans le sang.



# Partie A : Étude graphique

Avec la précision permise par le graphique, indiquer :

- 1) la concentration à l'instant initial;
- 2) l'intervalle de temps pendant lequel la concentration est supérieure ou égale à 0,4 gramme par litre.

On fera apparaitre sur le graphique les traits de construction nécessaires.

## Partie B : Étude théorique

On admet que la concentration peut être modélisée par la fonction f définie sur l'intervalle [0;15] par :  $f(x) = (x+2)e^{-0.5x}$ , où x représente le nombre d'heures écoulées depuis l'instant initial et f(x) la concentration, en grammes par litre, du médicament dans le sang.

- 1) On note f' la fonction dérivée de la fonction f. Justifier que  $f'(x) = -0.5xe^{-0.5x}$ , et en déduire le tableau de variation de la fonction f sur [0; 15].
- 2) Justifier que l'équation f(x) = 0,1 admet une unique solution  $\alpha$  sur [0;15].
- 3) Déterminer un encadrement de  $\alpha$  d'amplitude un dixième.
- 4) Un logiciel de calcul formel donne le résultat ci-dessous :

| 1 | derivez $((x+2) \cdot \exp(-O.5 \cdot x))$                     |                                                                   |
|---|----------------------------------------------------------------|-------------------------------------------------------------------|
|   |                                                                | $\exp(-0.5x) - 0.5 * \exp(-0.5x) * (x + 2)$                       |
| 2 | derivez(exp(-0.5 * x) - 0.5 * exp(-0.5 * x) * (x + 2))         |                                                                   |
|   |                                                                | $-\exp(-0.5 \cdot x) + 0.25 \cdot \exp(-0.5 \cdot x) \cdot (x+2)$ |
| 3 | factorisez $(-\exp(-0.5 * x) + 0.25 * \exp(-0.5 * x) * (x+2))$ |                                                                   |
|   |                                                                | $(0.25 * x - 0.5) * \exp(-0.5 * x)$                               |

En vous appuyant sur ces résultats, étudier la convexité de la fonction f sur l'intervalle [0; 15], et préciser l'abscisse d'un éventuel point d'inflexion.

### Partie C : Interprétation des résultats

En vous aidant des résultats obtenus, soit dans la partie B, soit par lecture graphique et sans justifier, répondre aux questions ci-dessous.

- 1) On estime que le médicament n'est plus actif lorsque la concentration est strictement inférieure à 0,1 gramme par litre. Pendant combien de temps le médicament est-il actif ?
- 2) Au bout de combien d'heures la baisse de concentration ralentit-elle ?