I - ACTIVITÉS NUMériQUES (12 points)

Exercice 1

\[A = 2 \times 10^2 + 10^1 + 10^{-1} + 2 \times 10^{-2} \]

1) \[A = 2 \times 10^2 + 10^1 + 10^{-1} + 2 \times 10^{-2} = 200 + 10 + 0,1 + 0,02 = 210,12. \] Donc \(A = 210,12 \).

2) D’après la question précédente, \(A = 2,1012 \times 10^2 \).

3) D’après le 1), \(A = 21012 \times 10^{-2} \).

4) \[A = 210 + 0,12 = 210 + \frac{12}{100} = 210 + \frac{6}{25} \times 0.02 = 210 + \frac{3}{25}. \] Donc \(A = 210 + \frac{3}{25} \).

Exercice 2

1) L’effectif total est \(N = 9 \). Or \(\frac{N}{2} = 4,5 \), alors la médiane \(Me \) de la série est la 5\(^{\text{ème}} \) valeur. Donc \(Me = 12 \).

\[x = \frac{7 + 8 \times 2 + 12 \times 2 + 14 + 15 \times 2 + 41}{9} = \frac{132}{9} = \frac{44}{3} \approx 14,7. \]

Par conséquent, la réponse correcte est la C.

2) Diminuer un prix de 15 % revient à multiplier ce prix par \(1 - \frac{15}{100} \), c’est-à-dire 0,85. Par conséquent, la réponse correcte est la C.

3) Si \(x = -3 \), alors \(A = -2 \times (-3)^2 = -2 \times 9 = -18 \). Donc, la réponse correcte est la B.

4) \((2x + 1) - (x - 3) = 0 \) équivaut à \(2x + 1 - x + 3 = 0 \), c’est-à-dire \(x + 4 = 0 \) ?

Alors l’équation \((2x + 1) - (x - 3) = 0 \) admet une solution \(x = -4 \). Par conséquent, la réponse correcte est la C.

Exercice 3

\[A = \frac{1}{4}[(a + b)^2 - (a - b)^2] \]

1) Si \(a = 1 \) et \(b = 5 \), alors \(A = \frac{1}{4}[(1 + 5)^2 - (1 - 5)^2] = \frac{1}{4}[6^2 - (-4)^2] = \frac{1}{4}[36 - 16] = \frac{1}{4} \times 20 = 5 \).

Donc \(A = 5 \) pour \(a = 1 \) et \(b = 5 \).

2) Si \(a = -2 \) et \(b = -3 \), alors

\[A = \frac{1}{4}[(-2 - 3)^2 - (-2 + 3)^2] = \frac{1}{4}[(-5)^2 - 1^2] = \frac{1}{4}[25 - 1] = \frac{1}{4} \times 24 = 6. \]

Donc \(A = 6 \) pour \(a = -2 \) et \(b = -3 \).
3) $A = \frac{1}{4}[(a + b)^2 - (a - b)^2] - \frac{1}{4}[(a + b) + (a - b)][(a + b) - (a - b)]$ car

$X^2 - Y^2 = (X + Y)(X - Y)$.

Alors $A = \frac{1}{4}[a + b + a - b][a + b - a + b] = \frac{1}{4} \times (2a) \times (2b) = \frac{4ab}{4} = ab$.

Donc Alex a raison : le nombre A est égal au produit des nombres a et b.
II – ACTIVITÉS GÉOMÉTRIQUES (12 points)

Exercice 1

1)

2) $AM^2 + MD^2 = 2,4^2 + 3,2^2 = 5,76 + 10,24 = 16$ et $AD^2 = 4^2 = 16$.

Comme $AM^2 + MD^2 = AD^2$, d’après la réciproque du théorème de Pythagore, le triangle AMD est rectangle en M.

3) Dans le triangle AMD rectangle en M, $\cos(\widehat{DAM}) = \frac{AM}{AD} = \frac{2,4}{4} = 0,6$.

On en déduit que la mesure de l’angle \widehat{DAM} est d’à peu près 53°.

4) Dans le triangle ADI rectangle en D, $\tan(\widehat{DAI}) = \frac{DI}{DA} = \frac{DI}{4}$.

Comme I appartient à la demi-droite $[AM]$, alors $\tan(\widehat{DAI}) = \tan(\widehat{DAM}) = \tan(53°)$.

On en déduit que $DI = 4 \times \tan(53°) \approx 5,3$. Donc la longueur DI mesure à peu près 5,3 cm.

Exercice 2

1) Le volume de cette ficelle cylindrique est égal à $\pi \times (0,5)^2 \times h$, c’est-à-dire à $0,0025 \times \pi \times h$ cm3.

2) Le volume de la pelote est égal à $\frac{4}{3} \times \pi \times 30^3$.

Or $\frac{4}{3} \times \pi \times 30^3 = \frac{4}{3} \times \pi \times 27000 = \frac{4}{3} \times \frac{2\pi \times 9000}{\beta} \times \pi = 36000 \times \pi$.

Donc le volume de la pelote est égal à $36000 \times \pi$ cm3.

3) Comme on suppose que la ficelle est enroulée de manière qu’il n’y ait aucun vide dans la pelote, d’après les questions précédentes, $0,0025 \times \pi \times h = 36000 \times \pi$.

Or $0,0025 \times \pi \times h = 36000 \times \pi$ équivaut à $h = \frac{36000 \times \beta}{0,0025 \times \beta} = 1,44 \times 10^7 = 144 \times 10^5$ cm.

Or 1 km $= 10^6$ cm ; alors, $h = 144$ km.
Par conséquent, **la longueur de la ficelle est égale à 144 km.**

4) D’après l’énoncé, il y a 295 élèves dans le collège d’Annie. Chacun possédant une pelote, la longueur de ficelle obtenue en déroulant toutes les pelotes et en les reliant bout à bout, est égale à 295×144 km, c’est-à-dire 42 480 km.

Or le tour de l’équateur terrestre mesure $2 \times \pi \times 6400$ km, c’est-à-dire environ 40 212 km.

Donc **Annie a raison de dire que l’on pourrait faire le tour de l’équateur terrestre avec toutes les pelotes du collège.**
III - PROBLÈME (12 points)

Partie A :
1) Dans le triangle ABC, M appartient à $[CB]$, N appartient à $[CA]$ et les droites (MN) et (CB) sont parallèles, d'après le théorème de Thalès, on a :
\[
\frac{CM}{CB} = \frac{CN}{CA} = \frac{MN}{BA}
\]
D'où : $\frac{50}{80} = \frac{MN}{60}$. Par suite $MN = \frac{50 \times 60}{80} = \frac{300}{80} = 37,5$.

2) aire $(CMN) = \frac{CM \times MN}{2} = \frac{50 \times 37,5}{2} = 937,5$.

Donc l'aire du triangle CMN mesure 937,5 m².

On en déduit que l'aire du trapèze $ANMB$ est supérieure à l'aire du triangle CMN.

3) Pour que les deux aires soient égales, il faut que l'aire du triangle augmente et que celle du trapèze diminue, il faut donc déplacer M vers B.
Pour que les deux aires soient égales, il faut placer le point M à plus de 50 m de C.

Partie B :
1) a) D'après la question 1) de la partie A, on a :
\[
\frac{CM}{CB} = \frac{CN}{CA} = \frac{MN}{BA}
\]
D'où : $\frac{x}{80} = \frac{MN}{60}$. Par suite $MN = \frac{x \times 60}{80} = \frac{60}{80} \times x = \frac{3}{4} x$.

2) aire $(CMN) = \frac{x \times \frac{3}{4} x}{2} = \frac{3x^2}{4} \times \frac{1}{2} = \frac{3x^2}{8}$.

3) a) On sait que l'aire du terrain est égale à 2 400 m², c'est-à-dire que la somme de l'aire du trapèze $ANMB$ et de l'aire du triangle CMN est égale à 2 400 m².

Donc, lorsque les aires du trapèze et du triangle sont égales, on pourra en déduire que le double de l'aire du triangle est égale à 2 400 m², et par suite, l'aire du triangle CMN sera égale à 1 200 m².

Construisons donc sur le graphique la droite d'équation $y = 1200$, et cherchons l'abscisse du point d'intersection de la courbe représentant la fonction f et de la droite.
b) On est amené à résoudre l’équation \(\frac{3}{8}x^2 = 1200 \).

Or \(\frac{3}{8}x^2 = 1200 \) équivaut à \(x^2 = 1200 \times \frac{8}{3} = \frac{9600}{3} = 3200 \).

Comme \(x \) appartient à l’intervalle \([0 ; 80]\), alors

\[x = \sqrt{3200} = \sqrt{2 \times 16 \times 100} = \sqrt{2} \times \sqrt{16} \times \sqrt{100} = \sqrt{2} \times 4 \times 10 = 40\sqrt{2} \]

Par conséquent, les deux parcelles ont la même aire lorsque \(x = 40\sqrt{2} \).

c) On en déduit que :

\[MN = \frac{3}{4} \times (40\sqrt{2}) = \frac{3 \times 4 \times 10 \sqrt{2}}{4} = 30\sqrt{2} \approx 42,4 \text{ m}. \]

Partie C :

1) L’aire d’une briquette est égale à 0,2 \times 0,1 m\(^2\), c’est-à-dire à 0,02 m\(^2\).

L’aire du muret est égale à 42,4 m\(^2\) (42,4 \times 1 \).

Or 42,4 \times 0,02 = 2120. Donc il faut 2 120 briquettes pour construire ce muret.

2)

<table>
<thead>
<tr>
<th>briquettes</th>
<th>euros</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>2120</td>
<td>(x)</td>
</tr>
</tbody>
</table>

On en déduit que 20\(x \) = 2120 \times 35.

D’où : \(x = \frac{74200}{20} = 3710 \).

Donc le muret coûtera 3 710 euros.