CORRECTION DU DEVOIR SURVEILLÉ N° 4

Second degré, suites

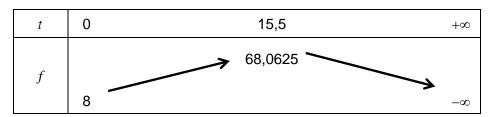
Le 15 décembre 2023

Exercice 1

$$u_{n+1} = -3(n+1)^2 - 4(n+1) - 2 = -3(n^2 + 2n + 1) - 4n - 4 - 2 = -3n^2 - 6n - 3 - 4n - 6 = -3n^2 - 10n - 9$$

Exercice 2

1)


i	и	S
1	5	8
2	9	17
3	17	34

2) Dans le cas général, cet algorithme calcule la somme des N premiers termes consécutifs de la suite (u_n) .

Exercice 3

- 1) $f(0) = -0.25 \times 0^2 + 7.75 \times 0 + 8 = 0 + 0 + 8 = 8$; donc la hauteur de la plateforme est de 8 mètres.
- 2) Cette fonction est une fonction polynôme du second degré avec a = -0.25, b = 7.75 et c = 8.

$$-\frac{b}{2a} = -\frac{7,75}{-0,5} = 15,5$$
 et *a* est négatif, alors on en déduit que

$$f(15,5) = -0.25 \times 15,5^2 + 7.75 \times 15,5 + 8 = 68,0625$$

- 3) D'après le tableau de variations, la hauteur maximale atteinte par ces fusées est d'environ 68 mètres.
- 4) On est amené à résoudre l'équation f(t) = 0, c'est-à-dire $-0.25t^2 + 7.75t + 8 = 0$.

$$\Delta = 7,75^2 - 4 \times (-0,25) \times 8 = 68,0625$$
.

Comme $\Delta > 0$, cette équation admet deux solutions :

$$t_1 = \frac{-7,75 - \sqrt{68,0625}}{-0,5} = \frac{-7,75 - 8,25}{-0,5} = 32 \text{ et } t_2 = \frac{-7,75 + \sqrt{68,0625}}{-0,5} = \frac{-7,75 + 8,25}{-0,5} = -1.$$

Comme -1<0, la fusée qui n'a pas explosé va atteindre le sol au bout de 32 secondes.

5) On est amené à résoudre l'inéquation f(t) > 40, c'est-à-dire $-0.25t^2 + 7.75t - 32 > 0$.

$$\Delta = 7,75^2 - 4 \times (-0,25) \times (-32) = 28,0625$$
.

Comme $\,\Delta > 0\,,$ ce trinôme du second degré admet deux racines :

$$t_1 = \frac{-7,75 - \sqrt{28,0625}}{-0,5} \approx 26,1 \text{ et } t_2 = \frac{-7,75 + \sqrt{28,0625}}{-0,5} \approx 4,9.$$

Par suite:

t	0	4,9	9	26	,1	+∞
$-0,25t^2+7,75t-32$		_ ф	+		_	

Par conséquent, les fusées dépasseront la hauteur de 40 mètres entre 4,9 s et 26,1 secondes.