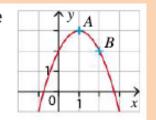
Exercice **0**


On considère la fonction affine f telle que :

f(2) = 3 et f(4) = -1.

En notant f(x) = mx + p, déterminer m puis p.

Exercice

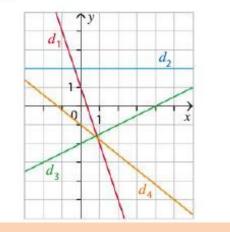
On considère la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + 2x + 2$ dont la courbe représentative est donnée ci-contre. A et B sont deux points de la courbe. Déterminer le coefficient directeur de la droite (AB).

Exercice **G**

Pour chacune des fonctions suivantes, donner l'expression de f(1 + h), où h est un réel tel que f(1 + h) existe.

a.
$$f(x) = 2x^2 - 5x + 1$$

b. $f(x) = \frac{x - 1}{x + 2}$
c. $f(x) = \sqrt{5x - 2}$
d. $f(x) = \frac{3}{5x^2 + 1}$


Exercice **0**

Déterminer le coefficient directeur des droites suivantes.

1.
$$\mathfrak{D}_1$$
, droite passant par A (5 ; 2) et B (-3 ; 1).
2. \mathfrak{D}_2 , droite passant par $C\left(\frac{1}{2};\frac{3}{4}\right)$ et $D\left(-1;\frac{1}{2}\right)$.
3. \mathfrak{D}_3 , droite passant par $E\left(-\sqrt{7};\frac{1}{3}\right)$ et $F\left(1+\sqrt{3};\frac{1}{3}\right)$

Exercice **4**

Déterminer, par lecture graphique, les équations réduites des droites d_1 , d_2 , d_3 et d_4 du graphique ci-dessous.

