

Soit f et g deux fonctions définies sur un intervalle I, et, \mathscr{C}_f et \mathscr{C}_g leurs représentations graphiques respectives.

- Si, pour tout x de I f(x) > g(x) , alors \mathscr{C}_f est au-dessus de \mathscr{C}_g sur I.
- Si, pour tout x de I f(x) < g(x) , alors \mathscr{C}_f est en dessous de \mathscr{C}_g sur I.
- Si $f(x_0) = g(x_0)$, alors \mathcal{C}_f et \mathcal{C}_g se coupent au point d'abscisse x_0 .

Soit f et g deux fonctions définies sur \mathbf{R} par $f(x) = -x^2 + 8x - 11$ et g(x) = x - 1. Étudier la position relative des courbes représentatives $\mathscr{C}_{_f}$ et $\mathscr{C}_{_g}$.

Soit $h(x) = f(x) - g(x) = -x^2 + 8x - 11 - x + 1 = -x^2 + 7x - 10$. Étudions le signe de h(x).

Le discriminant du trinôme h(x) est égal à : $\Delta = 7^2 - 4 \times (-1) \times (-10) = 9$.

Comme $\Delta > 0$, le trinôme possède deux racines distinctes : $x_1 = \frac{-7 - \sqrt{9}}{2 \times (-1)} = 5$ et $x_2 = \frac{-7 + \sqrt{9}}{2 \times (-1)} = 2$.

On en déduit alors le tableau de signes suivant :

Х	-8		2		5		+∞
h(x)		_	0	+	0	-	

On conclut:

La courbe \mathscr{C}_f est en dessous de la courbe \mathscr{C}_g pour tout x de $]-\infty$; 2] \cup [5; $+\infty$ [.

La courbe \mathscr{C}_f est au-dessus de la courbe \mathscr{C}_g pour tout x de [2; 5].

(2) Recopier et compléter la solution :

 $\underline{\acute{E}nonc\acute{e}}$: Soit f la fonction définie sur $\left[0\;;\;+\infty\right[\;\;par\;f\left(x\right)=\frac{x^2+1}{x^2-1}\;\;et\;g\left(x\right)=1.$

Étudier la position relative des courbes représentatives $\mathscr{C}_{\scriptscriptstyle f}$ et $\mathscr{C}_{\scriptscriptstyle g}$.

Soit
$$h(x) = f(x) - g(x) = \dots = \frac{2}{x^2 - 1}$$

Étudions le signe de h(x).

Comme ... > 0, alors le signe de h(x) dépend de celui de

On en déduit alors le tableau de signes suivant :

X	0	 +∞		
h(x)				

On conclut:

La courbe \mathscr{C}_{f} est en dessous de la courbe \mathscr{C}_{g} pour tout x de

La courbe \mathscr{C}_{f} est au-dessus de la courbe \mathscr{C}_{g} pour tout x de

Soit f la fonction définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{-x^2 + 5x - 4}{x - 2}$. On appelle \mathscr{C} sa courbe représentative.

- 1) a) Déterminer les réels a, b et c tels que, pour tout réel x différent de 2, $f(x) = ax + b + \frac{c}{x-2}$.
 - b) Étudier les variations de la fonction $x \mapsto \frac{c}{x-2}$.
 - c) En déduire les variations de f.
- 2) Étudier les positions relatives de $\mathscr C$ et de la droite d'équation y=-x+3.

