CORRECTION DU DEVOIR SURVEILLÉ N° 5

Fonctions dérivées, sens de variations d'une fonction

Le 23 mai 2025

Exercice 1

1) f est une fonction affine; donc f'(x) = -2.

2) On a
$$g = u + v$$
 avec $u(x) = x^2$ et $v(x) = 3x - 1$.

Alors
$$g' = u' + v'$$
 avec $u'(x) = 2x$ et $v'(x) = 3$.

Donc g'(x) = 2x + 3.

3) On a
$$h = 5 \times u - 4 \times v + w$$
 avec $u(x) = x^3$, $v(x) = x^2$ et $w(x) = 9$.

Alors
$$h' = 5 \times u' - 4 \times v' + w'$$
 avec $u'(x) = 3 \times x^2$, $v'(x) = 2 \times x$ et $w'(x) = 0$.

Donc
$$h'(x) = 5 \times 3 \times x^2 - 4 \times 2 \times x + 0 = 15x^2 - 8x$$
.

Exercice 2

Comme $f'(x) \ge 0$ sur [-5; -2], alors la fonction f est croissante sur cet intervalle. C'est donc la courbe 1 qui représente f.

Exercice 3

1) On cherche f(5): $f(5) = -5^3 + 10.5 \times 5^2 + 11.25 \times 5 = 193.75$. Or $193.75 \times 100 = 19.375$, donc il y avait 19.375 cas au bout de 5 jours.

2) a) On a
$$f = -u + 10.5v + w$$
 avec $u(x) = x^3$, $v(x) = x^2$ et $w(x) = 11.25x$.

Alors
$$f' = -u' + 10,5v' + w'$$
 avec $u'(x) = 3 \times x^2$, $v'(x) = 2 \times x$ et $w'(x) = 11,25$.

Donc
$$f'(x) = -3 \times x^2 + 10,5 \times 2 \times x + 11,25 = -3x^2 + 21x + 11,25$$
.

b)
$$(x-7.5)(-3x-1.5) = -3x^2 - 1.5x + 22.5x + 11.25 = -3x^2 + 21x + 11.25$$
.

Donc
$$f'(x) = (x-7,5)(-3x-1,5)$$
.

c)
$$x - 7.5 = 0$$
, c'est-à-dire $x = 7.5$.

$$-3x - 1.5 = 0$$
, c'est-à-dire $x = \frac{1.5}{-3} = -0.5$.

X	0		7,5		+∞
<i>x</i> – 7,5		_	φ	+	
-3x - 1,5		_		_	
f'(t)		+	ф	-	

On en déduit que

X	0		30	+∞
f'(x)		+	0	_
Variations de <i>f</i>	0		253,125	

- 3) a) Le maximum de f est atteint pour x = 7,5. Si l'évolution du nombre de cas est conforme à la modélisation, le pic épidémique aura lieu au cours du 8ème jour.
- b) Le nombre de cas augmente jusqu'au 8ème jour puis diminue.

Première ESM bis C. Lainé