CORRECTION DU DEVOIR SURVEILLÉ N° 5

Fonctions dérivées et variations

Le 21 mai 2024

Exercice 1

1) f est une fonction affine; donc f'(x) = -2.

2) On a g = u + v avec $u(x) = x^2$ et v(x) = 3x - 1.

Alors g' = u' + v' avec u'(x) = 2x et v'(x) = 3.

Donc g'(x) = 2x + 3.

3) On a $h = 5 \times u - 4 \times v + w$ avec $u(x) = x^3$, $v(x) = x^2$ et w(x) = 9.

Alors $h' = 5 \times u' - 4 \times v' + w'$ avec $u'(x) = 3 \times x^2$, $v'(x) = 2 \times x$ et w'(x) = 0.

Donc $h'(x) = 5 \times 3 \times x^2 - 4 \times 2 \times x + 0 = 15x^2 - 8x$.

Exercice 2

x	-∞ -1 +∞
g'(x)	+ 0 –
Variations de <i>g</i>	5

Exercice 3

1)
$$f(10) = -10^3 + 45 \times 10^2 + 100 = -1000 + 4500 + 100 = 3600$$
.

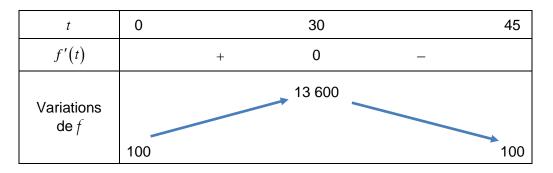
Il y aura 3 600 personnes malades au bout de 10 jours.

2) a) On a $f = -1 \times u + 45 \times v + w$ avec $u(t) = t^3$, $v(t) = t^2$ et w(t) = 100.

Alors $f' = -1 \times u' + 45 \times v' + w'$ avec $u'(t) = 3 \times t^2$, $v'(t) = 2 \times t$ et w'(t) = 0.

Donc $f'(t) = -1 \times 3 \times t^2 + 45 \times 2 \times t + 0 = -3t^2 + 90t$.

b) $3t(30-t) = 3t \times 30 - 3t \times t = 90t - 3t^2 = f'(t)$.


Donc, pour tout t de [0;45], f'(t) = 3t(30-t).

3) 3t = 0, c'est-à-dire t = 0.

30 - t = 0, c'est-à-dire t = 30.

t	0		30		45
3 t	0	+		+	
-1t + 30		+	ф	_	
f'(t)		+	ф	_	

4) On en déduit que

5) D'après le tableau de variations, le nombre maximal de personnes malades est 13 600, et ceci lors du 30^{ième} jour.

Première ESM C. Lainé